skip to main content


Search for: All records

Creators/Authors contains: "Mohr, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the RASS-MCMF catalogue of 8449 X-ray selected galaxy clusters over 25 000 deg2 of extragalactic sky. The accumulation of deep multiband optical imaging data, the development of the Multi-Component Matched Filter (MCMF) cluster confirmation algorithm, and the release of the DESI Legacy Survey DR10 catalogue makes it possible – for the first time, more than 30 yr after the launch of the ROSAT X-ray satellite – to identify the majority of the galaxy clusters detected in the second ROSAT All-Sky-Survey (RASS) source catalogue (2RXS). The resulting 90 per cent pure RASS-MCMF catalogue is the largest intracluster medium (ICM)-selected cluster sample to date. RASS-MCMF probes a large dynamic range in cluster mass spanning from galaxy groups to the most massive clusters. The cluster redshift distribution peaks at $z$ ∼ 0.1 and extends to redshifts $z$ ∼ 1. Out to $z$ ∼ 0.4, the RASS-MCMF sample contains more clusters per redshift interval (dN/dz) than any other ICM-selected sample. In addition to the main sample, we present two subsamples with 6912 and 5506 clusters, exhibiting 95 per cent and 99 per cent purity, respectively. We forecast the utility of the sample for a cluster cosmological study, using realistic mock catalogues that incorporate most observational effects, including the X-ray exposure time and background variations, the existence likelihood selection and the impact of the optical cleaning with the algorithm MCMF. Using realistic priors on the observable–mass relation parameters from a DES-based weak lensing analysis, we estimate the constraining power of the RASS-MCMF×DES sample to be of 0.026, 0.033, and 0.15 (1σ) on the parameters Ωm, σ8, and $w$, respectively.

     
    more » « less
  2. Abstract CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r , in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5 σ , or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL. 
    more » « less